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ABSTRACT

It is often claimed that the greatest value of the Bayesian framework in cognitive science

consists in its unifying power. Several Bayesian cognitive scientists assume that unifica-

tion is obviously linked to explanatory power. But this link is not obvious, as unification

in science is a heterogeneous notion, which may have little to do with explanation. While a

crucial feature of most adequate explanations in cognitive science is that they reveal

aspects of the causal mechanism that produces the phenomenon to be explained, the

kind of unification afforded by the Bayesian framework to cognitive science does not

necessarily reveal aspects of a mechanism. Bayesian unification, nonetheless, can place

fruitful constraints on causal–mechanical explanation.
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1 Introduction

A recurrent claim made in the growing literature in Bayesian cognitive science

is that one of the greatest values of studying phenomena such as perception,

action, categorization, reasoning, learning, and decision making within the

framework of Bayesian decision theory1 consists in the unifying power of this

1 The label ‘Bayesian’ in this field is a placeholder for a set of interrelated principles, methods,

tools, and problem-solving procedures whose hard core is the Bayesian rule of
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modelling framework. Josh Tenenbaum and colleagues, for example,

emphasize that Bayesian decision theory provides us with a ‘unifying math-

ematical language for framing cognition as the solution to inductive problems’

(Tenenbaum et al. [2011], p. 1285).

An assumption often implicit in this literature is that unification obvi-

ously bears on explanation. Griffiths et al. ([2010], p. 360), for example,

claim that ‘probabilistic models provide a unifying framework for explain-

ing the inferences that people make in different settings’. Clark ([2013],

p. 201) writes that ‘one way to think about the primary “added value" of

these [kinds of Bayesian] models is that they bring perception, action, and

attention into a single unifying framework. They thus constitute the perfect

explanatory partner [. . .] for recent approaches that stress the embodied,

environmentally embedded, dimensions of mind and reason’ (emphasis

added). Even more explicit is Friston ([2009], [2010]). He suggests that

the unification afforded to cognitive science by the Bayesian framework

might be driven by a specific hypothesis, which he calls the ‘free-energy

principle’, concerning how different phenomena are brought about by a

single type of mechanism. Friston writes: ‘If one looks at the brain as im-

plementing this scheme (minimizing a variational bound on disorder),

nearly every aspect of its anatomy and physiology starts to make sense’

(Friston [2009], p. 293); ‘a recently proposed free-energy principle for

adaptive systems tries to provide a unified account of action, perception

and learning [. . .] the principle [can] account for many aspects of brain

structure and function and lends it the potential to unify different perspec-

tives on how the brain works’ (Friston [2010], p. 127). Along the same lines,

Hohwy ([2013], p. 1) claims that the idea that brains are kinds of Bayesian

machines constantly attempting to minimizing prediction errors ‘has enor-

mous unifying power and yet it can explain in detail too’.

However, the link between unification and explanation is far from obvi-

ous (Morrison [2000]). It is not clear in which sense the kind of unification

produced by Bayesian modelling in cognitive science is explanatory. If the

relationship between unification, explanation, and Bayesian modelling in

cognitive science is elucidated, then the debate over the virtues and pitfalls

of the Bayesian approach (Jones and Love [2011]; Bowers and Davis

[2012a], [2012b]; for a reply, see Griffiths et al. [2012]) will make a step

forward.

The goal of the present article is to elucidate such a relationship. After an

overview of the Bayesian framework and of the variety of phenomena recently

studied within this framework in cognitive science (Section 1), we ask how

conditionalization, which prescribes how the probability of a hypothesis should be updated

based on new evidence.
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unification is produced within Bayesian cognitive science. To address this

question, we focus on the case of cue combination (Section 2). This case

illustrates how diverse phenomena can be unified within the Bayesian frame-

work. It will help us to argue that unification in Bayesian cognitive science is

driven by the mathematics of Bayesian decision theory, rather than by some

causal hypothesis concerning how different phenomena are brought about by

a single type of mechanism (Section 3). As there is no agreement on cases or

accounts of genuine explanation, we shall not assume that Bayesian unifica-

tion necessarily contributes (or fails to contribute) explanatory power. We

shall focus our attention on the relationship between Bayesian unification

and causal-mechanical explanation, assuming that one prominent feature of

many adequate explanations of cognitive phenomena is that they reveal at

least some relevant aspects of the mechanisms that produce those phenomena.

Given this plausible assumption, the second question we ask concerns what

types of constraints Bayesian unification can place on causal–mechanical ex-

planation in cognitive science. We shall address this question, showing that

some features of Bayesian unification can play at least a heuristic role in the

discovery and confirmation of the mechanisms of some cognitive phenomena

(Section 4). If these heuristics contribute to revealing some relevant aspects of

the mechanisms that produce phenomena of interest, then Bayesian unifica-

tion has genuine explanatory traction. Our novel contribution to existing lit-

erature is summarized in the conclusion.

2 What a Great Many Phenomena Bayesian Decision

Theory Can Model

Statistical inference is the process of drawing conclusions about an unknown

distribution from data generated by that distribution. Bayesian inference is a

type of statistical inference where data (evidence or new information) are used

to update the probability that a hypothesis is true. Probabilities are used to

represent degrees of belief in different hypotheses (or propositions). At the

core of Bayesian inference and Bayesian epistemology, there is a rule of con-

ditionalization that prescribes how to revise degrees of belief in different

hypotheses in response to new data.

Consider an agent who is trying to infer the process that generated some

data, d. Let H be a set of (exhaustive and mutually exclusive) hypotheses

about this process (known as ‘hypothesis space’). For each hypothesis h 2H,

P(h) is the probability that the agent assigns to h being the true generating

process, prior to observing data d. P(h) is known as the ‘prior’ probability.

The Bayesian rule of conditionalization prescribes that, after observing data

d, the agent should update P(h) by replacing it with P(hjd) (known as the

‘posterior probability’). To execute the rule of conditionalization, the agent
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multiplies the prior, P(h), by the likelihood, P(djh), as stated by Bayes’s

theorem,2

P hjdð Þ ¼
P djhð ÞPðhÞX
h2H

P djhð ÞPðhÞ
; ð1Þ

where P(djh) is the probability of observing d if h were true (known as ‘like-

lihood’), and the sum in the denominator ensures that the resulting prob-

abilities sum to one. According to Equation (1), the posterior probability of

h is directly proportional to the product of its prior probability and likeli-

hood, relative to the sum of the products and likelihoods for all alternative

hypotheses in hypothesis space H. The rule of conditionalization prescribes

that the agent should adopt the posterior P(hjd) as a revised probability

assignment for h: the new probability of h should be proportional to its

prior probability multiplied by its likelihood.

Bayesian conditionalization alone does not specify how an agent’s beliefs

should be used to generate a decision or an action. How to use the posterior

distribution to generate a decision is described by Bayesian decision theory,

and requires the definition of a loss (or utility) function, L(A, H). For

each action a 2 A—where A is the space of possible actions or decisions

available to the agent—the loss function specifies the relative cost of taking

action a for each possible h 2 H. To choose the best action, the agent

calculates the expected loss for each a, which is the loss averaged across

the possible h, weighted by the degree of belief in h. The action with the

minimum expected loss is the best action that the agent can take given her

beliefs.

Cognitive scientists have been increasingly using Bayesian decision theory

as a modelling framework to address questions about many different phenom-

ena. As a framework, Bayesian decision theory is comprised of a set of the-

oretical principles and tools grounded in Bayesian belief updating. Bayesian

models are particular mathematical equations that are derived from such

principles. Despite several important differences, all Bayesian models share

a common core structure. They capture a process that is assumed to generate

some observed data by specifying: (i) the hypothesis space under consider-

ation; (ii) the prior probability of each hypothesis in the hypothesis space; and

(iii) the relationship between hypotheses and data. The prior of each hypoth-

esis is updated in light of new data according to Bayesian conditionalization,

which yields new probabilities for each hypothesis. Bayesian models allow us

2 Bayes’s theorem is a provable mathematical statement that expresses the relationship between

conditional probabilities and their inverses. Bayes’s theorem expressed in odds form is known as

Bayes’s rule. The rule of conditionalization is instead a prescriptive norm that dictates how to

reallocate probabilities in light of new evidence or data.
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to evaluate different hypotheses about some generative process, and to make

inferences based on this evaluation.

Most Bayesian models of cognition target specific cognitive phenomena by

defining the computational problem underlying a phenomenon of interest and

its optimal solution. In many such models, questions about the phenomenon

of interest are explored in terms of solutions to the problem of learning about

the distribution responsible for generating observed data. Causal learning, for

example, can be modelled as the problem of learning the causal structure,

associated with a certain probability distribution, responsible for generating

some observed events; categorization can be framed as the problem of learning

the distribution responsible for generating the exemplars of a category; per-

ception can be understood as the problem of inferring the state of the world

that produced current sensory input. So, most Bayesian models of cognition

are hypotheses formulated in probabilistic terms about the type of computa-

tional problem that must be solved by an agent in order for the agent to

display certain cognitive phenomena. As will be made clear in the following

sections, most Bayesian models are not hypotheses about the mechanisms that

produce particular cognitive phenomena. They typically say nothing about

the spatiotemporally organized components and causal activities that may

produce particular cognitive phenomena, other than that such components

and activities—whatever they are—must yield a solution with particular prop-

erties to a specific computational problem.3

Among the phenomena recently modelled within the Bayesian framework

are categorization (Anderson [1991]; Kruschke [2006]; Sanborn et al. [2010];

see also Danks [2007]), causal reasoning (Pearl [2000]; Griffiths and

Tenenbaum [2009]), judgement and decision making (Griffiths and

Tenenbaum [2006]; see also Oaksford and Chater [2007]; Beck et al. [2008]),

reasoning about other agents’ beliefs and desires (Baker et al. [2011]), percep-

tion (Knill and Richards [1996]), illusions (Weiss et al. [2002]), psychosis

(Fletcher and Frith [2009]), motor control (Körding and Wolpert [2004];

3 Marr’s ([1982]) three-level framework of analysis is often used to put into sharper focus the

nature of Bayesian models of cognition (see Griffiths et al. [2010]; Colombo and Seriès [2012];

Griffiths et al. [2012]). Marr’s computational level specifies the problem to be solved in terms of

some generic input–output mapping, and of some general principle by which the solution to the

problem can be computed. In the case of Bayesian modelling, if the problem is one of extracting

some property of a noisy stimulus, the general principle is Bayesian conditionalization and the

generic input–output mapping that defines the computational problem is a function mapping

the noisy sensory input to an estimate of the stimulus that caused that input. It is ‘generic’ in that

it does not specify any particular class of rules for generating the output. Such a class is defined

at the algorithmic level. The algorithm specifies how the problem can be solved. Many Bayesian

models belong to this level, since they provide us with one class of methods for producing an

estimate of a stimulus variable as a function of noisy and ambiguous sensory information. The

level of implementation is the level of physical parts and their organization; it describes the

biological mechanism that carries out the algorithm.
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Wolpert and Landy [2012]), and language (Xu and Tenenbaum [2007];

Goldwater et al. [2009]; Perfors et al. [2011]).4

This overview should be sufficient to give a sense of the breadth of the

phenomena that can be modelled within the Bayesian framework. Given

this breadth, it is worth asking how unification is actually produced within

Bayesian cognitive science. To answer this question we turn to examine the

case of cue integration. The reasons why we focus on this case are twofold.

First, cue integration is one of the most studied phenomena within Bayesian

cognitive science. In fact, cue integration ‘has become the poster child for

Bayesian inference in the nervous system’ (Beierholm et al. [2008]). So, we

take this case to be paradigmatic of the Bayesian approach. Second, sensory

cue integration has been claimed to be ‘[p]erhaps the most persuasive evidence’

for the hypotheses that brains perform Bayesian inference and encode prob-

ability distributions (Knill and Pouget [2004], p. 713; for a critical evaluation

of this claim, see Colombo and Seriès [2012]). So, we believe that this case is

particularly helpful for exploring the question of which constraints Bayesian

unification can place on causal–mechanical explanation in cognitive science,

which will be the topic of Section 4.

3 The Case of Information Integration

Which strategy could our cognitive system use to combine information from

different sources so as to produce adaptive behaviour? One fruitful way to

explore this question is within the Bayesian framework (Bovens and

Hartmann [2003]; for a review focused on the Bayesian approach to percep-

tual integration, see Trommershäuser et al. [2011]). From a Bayesian perspec-

tive, the task of integrating different pieces of information is characterized

unambiguously and precisely. To carry out this task, cognitive systems must

weigh information from different sources by their respective reliabilities. How

much weight is given to each piece of information is determined as a function

of prior knowledge and the uncertainty associated with each piece of infor-

mation. Let us make this idea precise.

Call S a random variable that takes on one of a set of possible values s1,. . .,

sn of some physical property. A physical property of an object is any meas-

urable property of that object—for example, length. The value s1 of S de-

scribes the state of that object with respect to that property at a moment in

time. Call M a sequence of measurements m1,. . ., mn of a physical property. M

can be understood as a sequence of ‘cues’ or signals, which can be obtained

from different sources of information (or modalities). Call Mi and Mj two

4 Another list of phenomena and references is given by Eberhardt and Danks ([2011], Appendix),

who also emphasize that ‘Bayesian models of learning and inference have been proposed for just

about every major phenomenon in cognitive science’ ([2011], p. 390).
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sequences of measurements obtained, respectively, through modalities i and j.

Measurements Mi and Mj can be corrupted by noise, which can cause par-

ticular measurements mi and mj to yield the wrong value for a given s. Given

two sequences of measurements, Mi and Mj, of the property S, and assuming

that their noises are independent,5 the likelihood function P(Mi, MjjS) can be

derived, which describes how likely it is that any value of S gives rise to

measurements (Mi, Mj). If we assume that the prior P(S) is uniform (that is,

a constant),6 and we know the mean and variance of the probability distribu-

tions associated with the sequences of measurements Mi and Mj in isolation,

we can derive the mean and variance of the Bayes-optimal bimodal estimate in

the following way: If s2
Mi

is the variance of the estimate of S based on meas-

urements (‘cues’ or signals) from the source i, and s2
Mj

is the variance of the

estimate of S based on measurements from the source j, and the likelihoods

are Gaussian, that is,

PðMijSÞ / expð�
Mi � Sð Þ

2

2s2
Mi

Þ; ð2Þ

PðMjjSÞ / expð�
Mj � S
� �2

2s2
Mj

Þ; ð20Þ

then the posterior distribution of S given Mi and Mj will also be a Gaussian.

From Bayes’s theorem and Equations (2) and (20), it follows that:

P SjMi;Mj

� �
/ exp �

Mi � Sð Þ
2

2s2
Mi

�
Mj � S
� �2

2s2
Mj

 !
/ exp �

S �
s2

Mi
Mj þs2

Mj
Mi

s2
Mi
þs2

Mj

� �2

2
s2

Mi
s2

Mj

s2
Mi
þs2

Mj

:

0
BBB@

1
CCCA
ð3Þ

5 Different modalities are independent when the conditional probability distribution of either,

given the observed value of the other, is the same as if the other’s value had not been observed. In

much work on cue integration, independence has generally been assumed. This assumption can

be justified empirically by the fact that the cues come from different, largely separated sensory

modalities—for example, by the fact that the neurons processing visual information are far

apart from the cortical neurons processing haptic information in the cortex. If the cues are

less clearly independent, such as, for example, texture and linear perspective as visual cues to

depth, cue integration should take into account the covariance structure of the cues (see Oruç

et al. [2003]).
6 To say that the Bayesian prior is uniform is to say that all values of S are equally likely before

any measurement Mi. This assumption can be justified by the fact that, for example, experi-

mental participants have no prior experience with a given task, and thus no prior knowledge as

to which values of S are more or less likely to occur in the experiment.
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The maximum of this distribution is also the mean of the following

Gaussian:

S ¼
s2

Mi

s2
Mi
þ s2

Mj

Mj þ
s2

Mj

s2
Mi
þ s2

Mj

Mi: ð4Þ

This mean will fall between the mean estimates given by each isolated meas-

urement (if they differ) and will tend to be pushed towards the most reliable

measurement. Its variance is:

s2
S ¼

s2
Mi
s2

Mj

s2
Mi
þ s2

Mj

: ð5Þ

The combined reliability is then equal to the sum of individual sources

reliabilities:

1

s2
S

¼
1

s2
Mi

þ
1

s2
Mj

: ð6Þ

This entails that the reliability of the estimate of S based on the Bayesian

integration of information from two different sources, i and j, will always be

greater than that based on information from each individual source alone.

In sum, if different random variables are normally distributed (that is, they

are Gaussians), then the reliabilities (that is, inverse variances) of their distri-

butions add. The Bayesian strategy to integrate information from different

sources (or cues) corresponding to these random variables is to assign a weight

to each source proportional to its reliability (for a full mathematical proof of

this result, see Hartmann and Sprenger [2010]). The mean of the resulting,

integrated posterior distribution is the sum of the means of the distributions

corresponding to the individual sources, each weighted by their reliability, as

shown in Equation (4). This resulting integrated distribution will have min-

imal variance. Call this ‘linear model for maximum reliability’.

This type of model has been used to account for several phenomena, includ-

ing sensory, motor, and social phenomena. Ernst and Banks ([2002]) con-

sidered the problem of integrating information about the size of a target

object from vision and touch. They asked their experimental participants to

judge which of two sequentially presented objects was the taller. Participants

could make this judgement by relying on vision alone, touch alone, or vision

and touch together. For each of these conditions, the proportion of trials in

which the participant judged that the ‘comparison stimulus object’ (with vari-

able height) was taller than the ‘standard stimulus object’ (with fixed height)

was plotted as a function of the height of the comparison stimulus. These

psychometric functions represented the accuracy of participants’ judgements,

and were well fit by cumulative Gaussian functions, which provided the

Matteo Colombo and Stephan Hartmann8
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variances s2
V and s2

T for the two within-modality distributions of judgements.

It should be noted that various levels of noise were introduced in the visual

stimuli to manipulate their reliability. From the within-modality data, and in

accordance with Equations (3)-(5), Ernst and Banks could derive a Bayesian

integrator of the visual and tactile measurements obtained experimentally.

They assumed that the loss function of their participants was quadratic in

error—that is, L (S, f (Mi))¼ (S – f (Mi))
2—so that the predicted optimal

estimate based on both sources of information was the mean of the posterior

(as per Equation (4)). The predicted variance s2
VT of the visual–tactile esti-

mates was found to be very similar to the one observed experimentally when

participants used both visual and tactile information to make their judge-

ments. Participants’ performance was consistent with the claim that observers

combine cues linearly with the choice of weights that minimize quadratic loss.

As predicted by Equation (5), visual dominance was observed when the visual

stimulus had low or no noise—that is, when the visual estimate had low vari-

ance. Conversely, the noisier the visual stimulus, the more weight was given by

participants to tactile information. From these results, Ernst and Banks

([2002]) concluded that humans integrate visual and haptic information in a

statistically optimal fashion.

Exactly the same types of experimental and modelling approaches were

adopted by Knill and Saunders ([2003], p. 2539) to ‘test whether the human

visual system integrates stereo and texture information to estimate surface

slant in a statistically optimal way’, and by Alais and Burr ([2004]) to test

how visual and auditory cues could be integrated to estimate spatial location.

Their behavioural results were predicted by a Bayesian linear model of the

type described above, where information from each available source is com-

bined to produce a stimulus estimate with the lowest possible variance.

These results demonstrate that the same type of model could be used to

account for perceptual phenomena such as multi-modal integration (Ernst

and Banks [2002]), uni-modal integration (Knill and Saunders [2003]), and

the ‘ventriloquist effect’—that is, the perception of speech sounds as coming

from a spatial location other than their true one (Alais and Burr [2004]).

Besides perceptual phenomena, the same type of model can be used to study

sensorimotor phenomena. In Körding and Wolpert’s ([2004]) experiment, par-

ticipants had to reach a visual target with their right index finger. Participants

could never see their hands; on a projection-mirror system, they could see,

instead, a blue circle representing the starting location of their finger, a green

circle representing the target, and a cursor representing the finger’s position.

As soon as they moved their finger from the starting position, the cursor

disappeared, shifting laterally relative to the actual finger location. The

hand was never visible. Midway during the reaching movement, visual feed-

back of the cursor centred at the displaced finger position was flashed, which
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provided information about the current lateral shift. On each trial, the lateral

shift was randomly drawn from a Gaussian distribution, which Körding and

Wolpert referred to as ‘true prior’. The reliability of the visual feedback pro-

vided halfway to the target was manipulated from trial to trial by varying its

degree of blur. Participants were instructed to get as close as possible to the

target with their finger by taking into account the visual feedback displayed

midway through their movement. In order to reach the target on the basis of

the visual feedback, participants had to compensate for the lateral shift. If

participants learned the prior distribution of the lateral shift (that is, the ‘true

prior’), took into account how reliable the visual feedback was (that is, the

likelihood of perceiving a lateral shift xperceived when the true lateral shift is

xtrue), and combined these pieces of information in a Bayesian way, then

participants’ estimate of xtrue of the current trial given xperceived should have

moved towards the mean of the prior distribution P(xtrue) by an amount that

depended on the reliability of the visual feedback. For Gaussian distributions

this estimate is captured by Equation (4), and has the smallest mean squared

error. It is a weighted sum of the mean of the ‘true prior’ and the perceived

feedback position:

x ¼
s2

xperceived

s2
xperceived

þ s2
xtrue

mxtrue
þ

s2
xtrue

s2
xperceived

þ s2
xtrue

xperceived : ð40Þ

Körding and Wolpert found that the participants’ performances matched the

predictions made by Equation (40). They concluded that participants ‘impli-

citly use Bayesian statistics’ during their sensorimotor task, and ‘such a

Bayesian process might be fundamental to all aspects of sensorimotor control

and learning’ ([2006]. p. 246).

Let us conclude this section by turning to social decision making. Sorkin

et al. ([2001]) investigated how groups of people can combine information

from their individual members to make an effective collective decision in a

visual detection task. The visual detection task consisted in judging whether a

visual stimulus presented in each experimental trial was drawn either from a

‘signal-plus-noise’ or from a ‘noise-alone’ distribution. Each participant had,

first, to carry out the task individually; after the individual sessions, partici-

pants were tested in groups, whose size varied between three and ten members.

A model conceptually identical to the one used in research in multi-sensory

perception was adopted. Each individual member of the group corresponded

to a source of information, whose noise was assumed to be Gaussian and

independent of the noise from other sources. Individual group members’ de-

cisions, i, in the task were based on their noisy perceptual estimates, which

could be modelled as Gaussian distributions with mean mi and standard de-

viation si. The collective decision was generated by weighing each individual’s
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decision proportionally by the individual’s competence at the task—where

competence is the inverse of the variance of individual’s decisions, s2
i .

According to Sorkin and colleagues’ model of social decision making, in

reaching a collective decision, individual group members, i, communicated a

measure of confidence in their decisions. The measure communicated to the

group corresponded to both mi and si. Individual and group psychometric

functions were fit with a cumulative function, with bias b and variance s2. The

slope, si, of this function provides an estimate of the reliability of the individ-

ual estimates (that is, the individual’s competence at the task). Thus,

si ¼
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2
i

p : ð7Þ

A large si corresponds to small variance, and hence to highly reliable decisions.

Now, for groups of n members that have a specified mean, variance, and

correlation, the group bias, bgroup, is given in terms of the individual biases as:

bgroup ¼

Xn

i¼1
s2

i biXn

i¼1
s2

i

: ð8Þ

And the group slope (that is, group reliability), sgroup, is given as:

sgroup ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
s2

i

q
: ð9Þ

Equations (8) and (9) are derived from Equation (4) above, as they specify that

a statistically optimal way to integrate information during collective decision

making is to form a weighted average of each individual members’ judge-

ments. This model was shown to accurately predict group performance.

Consistent with the model, the group’s performance was generally better

than individual performances. When individual decisions were collectively

discussed, performance generally accrued over and above the performance

of the individual members of the group. Inconsistent with the model’s predic-

tions, performance tended to decrease as group size increased. This finding,

however, was not attributed to inefficiency in combining the information

provided by individual members’ judgements. Rather, Sorkin and colleagues

explained it in terms of a decrease ‘in member detection efforts with increased

group size’ (Sorkin et al. [2001], p. 200).

Bahrami et al. ([2010]) performed a similar study. They investigated pairs of

participants making collective, perceptual decisions. Psychometric functions

for individual participants and pairs were fit with a cumulative Gaussian

function. They compared the psychometric functions derived from experimen-

tal data to the predictions made by four models, one of which was the linear

model for maximum reliability. In line with Sorkin and colleagues’ ([2001])

results, and consistently with Equation (8), and Equation (9), pairs with
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similarly perceptually sensitive individuals (that is, similarly reliable) were

found to produce collective decisions that were close to optimal. Decisions

of pairs of individuals with different sensitivities, however, were best predicted

by a different model, according to which the type of information communi-

cated between individuals i during collective decision making is the ratio mi /si

(that is, a z-score of the distribution of their individual decisions). The result-

ing model assumes that during collective decision making there is a systematic

failure in aggregating individual information such that decisions of the least

reliable individual in the group are over-weighted. As the difference between

two observers’ perceptual sensitivities increases, collective decisions are worse

than the more sensitive individual’s decision. Hence, according to this model,

collective decisions rarely outperform the individual decisions of their best

members.

4 How Do Bayesian Models Unify?

The kind of unification afforded by Bayesian models to cognitive phenomena

does not reveal per se the causal structure of a mechanism. The unifying power

of the Bayesian approach in cognitive science arises in virtue of the mathem-

atics that it employs: this approach shows how a wide variety of phenomena

obey regularities that are captured by few mathematical equations. Such equa-

tions do not purport to capture the causal structure underlying a given phe-

nomenon. Bayesian modelling does not typically work by formulating an

encompassing hypothesis about the world’s causal relations. And Bayesian

unification does not necessarily (or typically) reveal the type of causal mech-

anism that might be responsible for various phenomena. The case of informa-

tion integration illustrates these two points well.

The fact that a common mathematical model of the type captured by

Equation (4) can be applied to a range of diverse phenomena, from sensory

cue integration to instances of collective decision making, does not warrant by

itself that we have achieved a causal unification of these phenomena. The

applicability of the model to certain phenomena, furthermore, is constrained

by general mathematical results, rather than by evidence about how certain

types of widespread regularities fit into the causal structure of the world. Let

us substantiate these claims in light of the basic idea underlying the unifica-

tionist account of explanation.

According to the unificationist account of explanation, explanation is a

matter of unifying a range of diverse phenomena with a few argument patterns

(Kitcher [1989]; see also Friedman [1974]). The basic idea is that ‘science ad-

vances our understanding of nature by showing us how to derive descriptions

of many phenomena, using the same pattern of derivation again and again,

and in demonstrating this, it teaches us how to reduce the number of facts that
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we have to accept as ultimate’ (Kitcher [1989], p. 423). Kitcher makes this idea

precise by defining a number of technical terms. For our purposes, it suffices to

point to the general form of the pattern of derivation involved in our case

study. Spelling out this pattern will make it clear how the applicability of a

Bayesian model to certain phenomena is constrained by general mathematical

results, rather than by evidence about how certain types of widespread reg-

ularities fit into the causal structure of the world.7

Let us consider a statement like, ‘the human cognitive system integrates

visual and tactile information in a statistically optimal way’. This statement

can be associated with a mathematical, probabilistic representation that ab-

stracts away from the concrete causal relationships that can be picked out by

the statement. Following Pincock’s ([2012]) classification, we can call this type

of mathematical representation ‘abstract acausal’. The mathematical repre-

sentation specifies a function from a set of inputs (that is, individual sources of

information) to a set of outputs (that is, the information resulting from inte-

gration of individual sources). The function captures what ‘to integrate visual

and tactile information in a statistically optimal way’ could mean. In order to

build such a representation, we may define two random variables (on a set of

possible outcomes, and probability distributions), respectively associated with

visual and tactile information. If these variables have certain mathematical

properties (that is, they are normally distributed and their noises are inde-

pendent), then one possible mathematical representation of the statement cor-

responds to Equation (4), which picks out a family of linear models (or

functions) of information integration for maximal reliability.

According to this type of mathematical representation, two individual

pieces of information are integrated by weighting each of the two in propor-

tion to its reliability (that is, the inverse variance of the associated probability

distribution). The relationship between the individual pieces of information

and the integrated information captures what ‘statistically optimal informa-

tion integration’ could mean, namely, information is integrated based on a

minimum-variance criterion. The same type of relationship can hold not only

for visual and tactile information, but for any piece of information associated

with a random variable whose distribution has certain mathematical

7 According to a unificationist, the applicability of a model to several phenomena need not be

constrained by causal information for the model to be explanatory. In this article, we remain

agnostic about whether a particular unificationist account of explanation fits explanatory prac-

tice in cognitive science, and about whether the type of unification afforded by Bayesian model-

ling to cognitive science fits Kitcher’s ([1989]) account of explanation. If Bayesian unification in

cognitive science actually fits Kitcher’s ([1989]) account, then there would be grounds to support

the (independently plausible) ideas that not all adequate explanation in cognitive science should

be causal–mechanical, and that not all cognitive scientists are pure causal–mechanical theorists

when it comes to what they think of as adequate explanation. We shall not pursue these ideas

further, as—recall—the focus of our attention here is on the relationship between

causal–mechanical explanation and Bayesian unification.
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properties. Drawing on this type of relationship, we can derive descriptions of

a wide variety of phenomena, regardless of the details of the particular mech-

anism producing the phenomenon.

What allows the derivations of all these descriptions is the wide scope of

applicability of the linear model for maximum reliability expressed in the

language of probability. The scope of applicability of the model is constrained

by mathematical results, rather than by evidence about some causal structure.

This model is an instance of what Pincock’s ([2012]) dubs ‘abstract varying’

mathematical representations: ‘With an abstract varying representation we

can bring together a collection of representations in virtue of the mathematics

that they share, and it can turn out that the success of this family of repre-

sentations is partly due to this mathematical similarity’ (Pincock [2012], p. 6).

So, what unites all the descriptions of phenomena derivable from the linear

model for information integration is an underlying mathematical relation,

furnished by an abstract, more general mathematical framework—namely,

the Bayesian framework—which serves as unifying language that uses prob-

ability distributions and Bayesian conditionalization in order to represent

uncertainty and update belief in a given hypothesis in light of new

information.

Let us conclude this section by considering the claim that the applicability

to several phenomena of a model such as the linear model for information

integration does not demonstrate by itself that a causal unification of these

phenomena is achieved. One way to substantiate it is to examine the types of

conclusions made by the studies surveyed in the section above about the

mechanism underlying the phenomenon of interest. Ernst and Banks

([2002]) suggest that the neural mechanism of sensory cue-integration need

not explicitly calculate the variances (and therefore the weights) associated

with visual and tactile estimators for each property and situation. A neural

mechanism for Bayesian cue integration—Ernst and Banks ([2002], pp. 432–3)

surmise—might compute an estimate of those variances ‘through interactions

among populations of visual and haptic [that is, tactile] neurons’ by taking

account of the spread of the distributions of the responses of visual and tactile

populations neurons. So, Ernst and Banks did not draw any specific conclu-

sion about the mechanism underlying the perceptual phenomenon they suc-

cessfully modelled. Rather, they reasoned that if the nervous system

implements some form of Bayesian cue integration, then it need not explicitly

represent or ‘learn’ the variance associated with each cue. Alais and Burr

([2004], p. 261) acknowledge that they ‘can only guess at the mechanism

involved’. Körding and Wolpert ([2004], p. 244) claim that ‘the central nervous

system [. . .] employs probabilistic models during sensorimotor learning’.

However, this claim is left unsubstantiated. It is only noted that ‘a Bayesian

view of sensorimotor learning is consistent with neurophysiological studies
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showing that the brain represents the degree of uncertainty when estimating

rewards’ ([2004], p. 246). Sorkin et al. ([2001]) as well as Bahrami et al. ([2010])

focused on how group performance depended on the reliability of the mem-

bers, the group size, the correlation among members’ judgements, and the

constraints on member interaction. The conclusions that they drew from the

application of Bayesian models to group decisions in their experiments did not

include any suggestion, nor any hypothesis, about the mechanism underlying

group performance. Finally, Knill and Saunders ([2003]) explicitly profess

agnosticism about the mechanism underlying their participants (Bayesian)

performance. They make it clear right at the beginning that they considered

‘the system for estimating surface slant to be a black box with inputs coming

from stereo and texture and an output giving some representation of surface

orientation’ ([2003], p. 2541). Even if a linear model for cue integration suc-

cessfully matched their participants’ performance, they explain, ‘psychophys-

ical measurements of cue weights do not, in themselves, tell us much about

mechanism. More importantly, we believe that interpreting the linear model as

a direct reflection of computational structures built into visual processing is

somewhat implausible’ ([2003], p. 2556).

At best, therefore, the applicability of the linear model for information

integration to several phenomena can motivate questions about underlying

mechanisms. It can motivate questions such as how populations of neurons,

which might be components of some mechanism of cue integration, through

their activities could represent and handle the uncertainty inherent in different

sources of information. Also, because the model is not constrained by evi-

dence relevant to some causal hypothesis, its successful applicability to a wide

variety of phenomena does not warrant, by itself, that a causal unification of

these phenomena is achieved.

In sum, unification in Bayesian cognitive science is most plausibly under-

stood as the product of the mathematics of Bayesian decision theory, rather

than of a causal hypothesis concerning how different phenomena are brought

about by a single kind of mechanism. If models in cognitive science ‘carry

explanatory force to the extent, and only to the extent, that they reveal (how-

ever dimly) aspects of the causal structure of a mechanism’ (Kaplan and

Craver [2011], p. 602), then Bayesian models, and Bayesian unification in

cognitive science more generally, do not have explanatory force. Rather

than addressing the issue of the conditions under which a model is explana-

tory, we accept that a crucial feature of many adequate explanations in the

cognitive sciences is that they reveal aspects of the causal structure of the

mechanism that produces the phenomenon to be explained. In light of this

plausible claim, we ask a question that we consider to be more fruitful: what

sorts of constraints can Bayesian unification place on causal–mechanical ex-

planation in cognitive science? If these constraints contribute to revealing
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some relevant aspects of the mechanisms that produce phenomena of interest,

then Bayesian unification has genuine explanatory traction.

5 Bayesian Unification: What Constraints Are There on

Mechanistic Explanation?

There are at least three types of defeasible constraints that Bayesian unifica-

tion can place on causal–mechanical explanation in cognitive science.8 The

first type of constraint is on mechanism discovery; the second type is on the

identification of factors that can be relevant to the phenomena produced by a

mechanism; the last type of constraint is on confirmation and selection of

competing mechanistic models.

5.1 Unification constrains mechanism discovery

Several philosophers have explored the question of how mechanisms are dis-

covered (Bechtel and Richardson [1993]; Craver and Darden [2001]; Darden

and Craver [2002]; Bechtel [2006]; Darden [2006]). If mechanisms consist of

spatiotemporally organized components and causal activities, then in order to

discover mechanisms we need strategies to identify components, their activ-

ities, and how they are spatiotemporally organized. One heuristic approach

motivated by Bayesian unification constrains the search space for mechan-

isms. The strategy of this approach is as follows: if behaviour in a variety of

different tasks is well-predicted by a given model, then presume that some

features of the model map onto some common features of the neural mech-

anisms underlying that behaviour.

According to this strategy, the success of a Bayesian model in unifying

several behavioural phenomena grounds the presumption that the underlying

neural mechanisms possess features that correspond to features of the

Bayesian model. Put differently, the success of a given Bayesian model in

unifying several behavioural phenomena provides grounds for presuming

that there is an isomorphism between the behavioural (or psychophysical)

model and the model of the underlying neural mechanism.9

This heuristic approach to mechanism discovery is widespread in areas of

cognitive science such as computational cognitive neuroscience, where a grow-

ing number of theoretical, as well as empirical, studies have started to explore

8 The arguments developed in this section may apply to unifying frameworks used in

non-Bayesian cognitive science (for example, the framework of dynamical system theory).
9 The relationship between the two models need not be isomorphic to ground the heuristic under

discussion. A similarity relationship that is weaker than isomorphism can be sufficient, espe-

cially when some relevant aspects and degrees of similarity are specified (Teller [2001]; Giere

[2004]). The specification of such respects and degrees depends on the question at hand, avail-

able background knowledge, and the larger scientific context (Teller [2001]).
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how neural mechanisms could implement the types of Bayesian models that

unify phenomena displayed in many psychophysical tasks (Rao [2004]; Beck

et al. [2008]; Deneve [2008]; Ma et al. [2008]; Vilares and Körding [2011]). The

basic idea is to establish a mapping between psychophysics and neurophysi-

ology that could serve as a starting point for investigating how activity in

specific populations of neurons can account for the behaviour observed in

certain tasks. Typically, the mapping is established by using two different

parameterizations of the same type of Bayesian model.

For example, the linear model used to account for a wide range of phenom-

ena in psychophysical tasks includes perceptual weights on different sources of

perceptual information that are proportional to the reliability of such sources.

If we presume that there is an isomorphism (or similarity relation) between

this model and a model of the underlying neural mechanism, then neurons of

this underlying mechanism should combine their inputs linearly with neural

weights proportional to the reliability of the inputs. While the behavioural

model includes Gaussian random variables corresponding to different percep-

tual cues and parameters corresponding to weights on each perceptual cue, the

neural model includes different neural tuning curves and parameters corres-

ponding to weights on each tuning curve.10 Drawing on this mapping, one

prediction is that neural and perceptual weights will exhibit the same type of

dependence on cue reliability. This can be determined experimentally, and

would provide information relevant to discover neural mechanisms mediating

a widespread type of statistical inference.

More concretely, Fetsch et al. ([2011]) provide an illustration of how

Bayesian unification can constrain the search space for mechanisms, demon-

strating one way in which a mapping can be established between psychophys-

ics and neurophysiology. This study asked how multisensory neurons combine

their inputs to produce behavioural and perceptual phenomena that require

integration of multiple sources of information. To answer this question,

Fetsch and colleagues trained macaque monkeys to perform a heading dis-

crimination task, where the monkeys had to make estimations of their heading

direction (that is, to the right or to the left) based on a combination of ves-

tibular and visual motion cues with varying degree of noise. Single-neuron

activity was recorded from the monkeys’ dorsal medial superior temporal area

(MSTd), which is a brain area that receives both visual and vestibular neural

signals related to self-motion.

Fetsch and colleagues used a standard linear model of information integra-

tion, where heading signal was the weighted sum of vestibular and visual

heading signals, and the weight of each signal was proportional to its

10 Neuronal tuning curves are plots of the average firing rate of neurons (or of populations of

neurons) as a function of relevant stimulus parameters.
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reliability. This model was used to account for the monkeys’ behaviour, and to

address the question about underlying mechanisms. In exploring the possible

neural mechanism, Fetsch and colleagues proceeded in three steps. First, the

relevant neural variables were defined in the form of neural firing rates (that is,

number of neural spikes per second). These variables replaced the more ab-

stract variables standing for vestibular and visual heading signals in the linear

model, which was initially used to account for the behavioural phenomena

displayed by their monkeys. Thus, the combined firing rates of MSTd neurons

were modelled as:

fcombðy; cÞ ¼ Aves cð ÞfvesðyÞ þ Avis cð ÞfvisðyÞ; ð10Þ

where fcomb, fves, and fvis were the firing rates (as a function of heading and/or

noise) of a particular neuron for the combined, vestibular, and visual modal-

ity; � denoted heading; c denoted the noise of the visual cue; and Aves and Avis

were neural weights. Second, they described ‘at a mechanistic level, how multi-

sensory neurons should combine their inputs to achieve optimal cue integra-

tion’ (Fetsch et al. [2011]). Third, they tested whether the activity of MSTd

neurons follows these predictions.

It should be clear that the success of the linear model in unifying phenomena

studied at the level of psychophysics does not imply any particular mechanism

of information integration. However, when mechanisms are to be discovered,

and few (if any) constraints are available on the search space, unificatory

success provides a theoretical basis for directly mapping Bayesian models of

behaviour onto neural operations. From the assumption that the causal activ-

ities of single neurons, captured by their tuning curves, are isomorphic (or

similar) to the formal structure of the unifying Bayesian model, precise, test-

able hypotheses at the neural level follow.

One hypothesis is that to produce cognitive phenomena that require the

integration of different sources of information, single neurons transform

trains of spikes using a weighted linear summation rule of the type picked

out by Equation (4). Another hypothesis is that the neural weights on vestibu-

lar and visual neurons are proportional to the reliability of the respective

neural signals. By testing these hypotheses, Fetsch et al. ([2011], p. 146) pro-

vided ‘direct evidence for a neural mechanism mediating a simple and wide-

spread form of statistical inference’. They provided evidence that MSTd

neurons are components of the mechanism for self-motion perception; that

these mechanistic components combine their inputs in a manner that is similar

to a weighted linear information-combination rule; and that the activity of

populations of neurons in the MSTd underlying such combinations encodes

cue reliabilities quickly and automatically, without the need for learning which

cue is more reliable.
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5.2 Unification constrains the identification of relevant

mechanistic factors

According to the mechanistic account of explanation, adequate mechanistic

explanations describe all and only the relevant components and interactions of

a mechanism—those that make a difference as to whether the phenomenon to

be explained occurs or not. Identifying which features of a mechanism (which

of its components, activities, or spatial and temporal organization) are rele-

vant is far from being unproblematic (see Craver [2007], pp. 139–59; Strevens

[2004], [2008], pp. 41–65).

The unification afforded by Bayesian modelling in cognitive science has

heuristic value in guiding the identification of relevant mechanistic features.

As we saw in Section 3, Bayesian models typically abstract away from the

causal features of the concrete systems (or mechanisms) to which they apply:

they can be said to be abstract acausal representations. As with other abstract

acausal representations, Bayesian models specify the minimal possible amount

of factors that entail the phenomenon to be explained. Recall that Bayesian

models account for particular phenomena displayed by concrete systems by

specifying three ingredients: (i) a likelihood function, which represents the

degree to which some observed data are expected given different hypotheses;

(ii) a prior probability distribution, which represents the system’s degree of

confidence regarding the plausibility of different hypotheses; (iii) a loss func-

tion, which specifies the cost of making certain decisions or taking certain

actions.

Such degree of abstractness allows the same type of model to target several

phenomena displayed by different concrete mechanisms—provided that a

suitable prior, likelihood, and loss function are specified. The same types of

factors (that is, likelihood, prior, and loss function) are sufficient to entail

several phenomena produced by different concrete mechanisms. If the same

types of factors entail several phenomena displayed by diverse mech-

anisms, then this supports the idea that some feature common to these mech-

anisms can be identified such that the entailment relation between the

Bayesian model and the phenomena that it accounts would be, at least

partly, explained.

This feature would contribute to explaining the entailment relation between

the Bayesian model and the phenomena because it would be relevant both to

causally producing the phenomena, and to how the probability distributions

required by the Bayesian model may be represented and transformed within

the brain. The feature would be relevant to causally producing the phenomena

in the sense that it would make a difference to whether the phenomena to be

explained occurred or not. It would be relevant to how probability
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distributions may be represented and transformed within the brain in the sense

that the feature would make a difference to whether Bayesian inference can be

implemented by neural activity or not.

One such feature is the high variability of cortical neurons partly due to

external noise (that is, noise associated with variability in the outside world).

The responses of cortical neurons evoked by identical external stimuli vary

greatly from one presentation of the stimulus to the next, typically with

Poisson-like statistics.11 Ma et al. ([2006], p. 1432) identified this feature of

cortical neurons as relevant to whether Bayesian inference can be imple-

mented by neural activity. It was shown that the Poisson-like form

of neural spike variability ‘implies that populations of neurons automatically

represent probability distributions over the stimulus’, which they

called ‘probabilistic population code’. This coding scheme would then

‘allow neurons to represent probability distributions in a format that reduces

optimal Bayesian inference to simple linear combinations of neural activities’

(Ma et al. ([2006], p. 1432; on alternative coding schemes, see Fiser et al.

[2010]).

This feature of cortical neurons is relevant not only to whether Bayesian

inference can be implemented by neural activity, but also to the causal pro-

duction of phenomena such as those displayed by people in cue combination

tasks. With an artificial neural network, Ma and colleagues demonstrated that

if the distribution of the firing activity of a population of neurons is approxi-

mately Poisson, then a broad class of Bayesian inference reduces to simple

linear combinations of populations’ neural activities. Such activities could be

at least partly responsible for the production of the phenomena displayed in

cue combination tasks.

This study illustrates how Bayesian unification constrains the identification

of a relevant feature of a mechanism. Ma et al. ([2006]) relied on the finding

that the same type of Bayesian model unifies several phenomena displayed in a

variety of psychophysical tasks to claim that neurons ‘must represent prob-

ability distributions’ and ‘must be able’ to implement Bayesian inference

([2006], p. 1432). Thus, they considered which feature of neural mechanisms

is such that it could, at least partly, explain the entailment relation between the

weighted, linear Bayesian model and the phenomena for which it accounts.

Poisson-like neural noise was identified as a mechanistic feature that may be

necessary for neural mechanisms to represent probability distributions and

implement Bayesian inference.

11 Ma and colleagues use ‘Poisson-like’ to refer to the exponential family of distributions with

linear sufficient statistic. The Poisson distribution is used to model the number of discrete events

occurring within a given time interval. The mean of a Poisson-distributed random variable is

roughly equal to its variance. Accordingly, if the spike count of a neuron follows Poisson-like

statistics, then the neuron’s firing rate variance is roughly equal to its mean firing rate.
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5.3 Unification constrains confirmation of competitive

mechanistic models

It has been claimed that unification is relevant to confirmation as it is relevant

to identifying which of several competing models is the most predictively ac-

curate; more unified models are then preferable to disunified models, other

things being equal (Forster and Sober [1994]; Sober [2003]). It has also been

claimed that unification is relevant to confirmation because it can render dis-

parate phenomena informationally relevant to each other (Myrvold [2003])

and because the unifying power of a family of abstract, varying mathematical

representations allows for transfer of evidential support from one model in the

family to another (Pincock [2012], Chapter 1.3).

Unification can also be relevant to confirmation of a mechanistic model.

Specifically, Bayesian unification can be relevant to identifying which one

among competing mechanistic models of a target cognitive phenomenon

should be preferred. If we want to judge which one of the mechanistic models

M1 and M2 is more adequate when available data, D1, confirm M1 and dis-

confirm M2, and D2 confirm M2 and disconfirm M1, the fact that M2 and D2

are coherent with a unifying model, U, while M1 and D1 are not provides us

with evidence in favour of M2 (for a technical discussion of this point in the

framework of Bayesian confirmation theory, see the Appendix).

To articulate this point in the light of a concrete example, let us consider two

competing models of the mechanism of multisensory integration. According

to the first model, put forward by Stein and Meredith ([1993]), the response of

neurons to information delivered by multiple sensory modalities (that is, their

multimodal response) is generally greater than the sum of their responses to

information delivered by single sensory modalities (that is, their unimodal

response). Hence, multimodal responses should generally exhibit superaddi-

tivity, which suggests that the mechanism of multisensory integration uses

some non-linear combination operation to combine different modality-spe-

cific pieces of information. A lack of superadditive effect in a given neural

circuit should then be taken as evidence for a lack of multisensory integration

(Calvert [2001]; see also Beauchamp [2005]; Laurienti et al. [2005]; Stanford

and Stein [2007]).

According to the alternative model, put forward by Ma et al. ([2006]),

multimodal responses are generally the sum of the responses to the unisensory

inputs, provided that the variability of multisensory neurons is Poisson-like.

Multisensory responses should generally exhibit additivity (or subadditivity

due to additivity minus a baseline shift). A lack of superadditive effect in a

given neural circuit should not be taken as evidence for a lack of multisensory

integration. Rather, additive (or subadditive) effects should be taken as evi-

dence for multisensory integration.
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Now, both superadditive and additive or subadditive neural responses have

been found during neurophysiological, as well as functional, neuroimaging

studies of multisensory integration (for recent reviews, see Stein and Stanford

[2008]; Klemen and Chambers [2012]; see also Angelaki et al. [2009]). If the

empirical data do not clearly favour either of the two models, then the fact

that one model, along with the empirical data confirming it, coheres with a

more abstract unifying model is evidence in favour of that model over the

alternative.12 Generally, coherence of a mechanistic model with a more ab-

stract unifying model boosts confirmation of that model partly because it

bears on its fruitfulness, where the fruitfulness of a model measures the

number and importance of theoretical and practical results it can produce.

A model is fruitful if it suggests further research that can furnish theoretical

insights and/or afford practical applications.

Ma et al.’s ([2006]) model of multisensory integration is coherent with the

weighted linear Bayesian model that accounts for psychophysical results from

studies of several cognitive phenomena. Instead, the alternative model that

predicts superadditive responses underlain by non-linear operations for multi-

sensory integration is not coherent with the Bayesian model, or with any other

equally unifying abstract model. In fact, the construction of such models was

driven by piecemeal empirical findings from neural, perceptual, and behav-

ioural studies, rather than by defining the computational problem underlying

a phenomenon of interest (Stein and Meredith [1993]).

Ma and colleagues showed exactly how a linear combination of different

sources of information can be implemented in a neural network of

conductance-based integrate-and-fire neurons, where patterns of neural

populations’ activity encoded the uncertainty about each piece of information.

This model thus places the mechanism of multisensory integration within a

broad and encompassing framework, which allows us to formulate precise,

testable hypotheses about how the neural operations of the mechanism of

multisensory integration relate to the probabilistic operations postulated by

the abstract Bayesian model unifying behavioural-level phenomena (Ma and

Pouget [2008]).

When some of the assumptions (for example, Poisson-like variability) or

predictions (for example, additive multisensory response) of the mechanistic

model are violated, its coherence relations with the abstract unifying Bayesian

model provides us with a basis to figure out quantitatively what the sources of

these violations might be. Ma et al.’s ([2006]) model, for instance, predicts that

neural synaptic weights during multisensory cue integration should be inde-

pendent of the cue reliability: populations of neurons combine their inputs

12 Here ‘coherence’ can be understood, intuitively, as ‘how well a body of belief “hangs together”’

(BonJour [1985], p. 93]). For more precise explications of coherence, see (Shogenji [1999];

Bovens and Hartmann [2003]; Thagard [2007]).
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while maintaining fixed weights. This prediction was violated by Fetsch et al.’s

([2011]) empirical results, which indicate that neurons in the MSTd combine

their inputs linearly, but with weights dependent on cue reliability—as the

more abstract unifying model postulates. Taking account of the coherence

relations between the abstract unifying model, Ma et al.’s mechanistic

model, and available evidence about MSTd’s neurons firing statistics,

Fetsch and collaborators were able to characterise quantitatively the source

of the violation—that is, the assumption that cue reliability has multiplicative

effects on neural firing rate, which is not the case for MSTd neurons—and to

identify how Ma et al.’s model should be revised so that it would predict

reliability-dependent neural weights (see also Angelaki et al. [2009]).

Coherence of a mechanistic model such as Ma et al.’s ([2006]) with another

more abstract, unifying Bayesian model can then boost its confirmation as

well as fruitfulness, thereby providing reason to prefer it over competitors.

6 Conclusion

Given that there are many hundreds of cognitive phenomena, and that differ-

ent approaches and models will probably turn out to be the most explanatorily

useful for some of these phenomena but not for others—even if some grand

Bayesian account such as Friston’s ([2010]) proves correct in some sense—it is

doubtful that any Bayesian account will be compatible with all types of causal

mechanism underlying those phenomena.

Informed by this observation, the present article has made two contribu-

tions to existing literature in philosophy and cognitive science. First, it has

argued that Bayesian unification is not obviously linked to causal–mechanical

explanation: unification in Bayesian cognitive science is driven by the math-

ematics of Bayesian decision theory, rather than by some causal hypothesis

concerning how different phenomena are brought about by a single type of

mechanism. Second, Bayesian unification can place fruitful constraints on

causal–mechanical explanation. Specifically, it can place constraints on mech-

anism discovery, on the identification of relevant mechanistic features, and on

confirmation of competitive mechanistic models.
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Appendix

In this Appendix, we provide a confirmation-theoretical analysis of the situa-

tion discussed in Section 4.3. The goal of this analysis is to make the claims

made in Section 4.3 plausible from a Bayesian point of view. Our goal is not to

provide a full Bayesian analysis of the situation discussed; such a discussion

would be beyond the purpose of the present article.

We proceed in three steps. In the first step, we analyse the situation where

we have two models, M1 and M2, and two pieces of evidence, D1 and D2. This

situation is depicted in the Bayesian Network in Figure A1.13 To complete it,

we set for i¼ 1, 2:

PðMiÞ ¼ mi;

PðDijM1;M2Þ ¼ ai;PðDijM1;:M2Þ ¼ bi; ðA:1Þ

PðDij:M1;M2Þ ¼ gi;PðDij:M1;:M2Þ ¼ di:

Following the discussion in Section 4.3, we make four assumptions: (1) D1

confirms M1. (2) D2 confirms M2. (3) D1 disconfirms M2. (4) D2 disconfirms

M1. Assumption (1) implies that the likelihood ratio

L1;1 :¼
PðD1j:M1Þ

PðD1jM1Þ
< 1: ðA:2Þ

Assumption (2) implies that

13 For a straight-forward exposition (for philosophical applications) of the relevant bits and pieces

of the theory of Bayesian networks, see (Bovens and Hartmann [2003], Chapter 3).
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L2;2 :¼
PðD2j:M2Þ

PðD2jM2Þ
< 1: ðA:3Þ

Assumption (3) implies that

L1;2 :¼
PðD1j:M2Þ

PðD1jM2Þ
> 1: ðA:4Þ

Finally, assumption (4) implies that

L2;1 :¼
PðD2j:M1Þ

PðD2jM1Þ
> 1: ðA:5Þ

It is easy to show (proof omitted) that assumptions (1)-(4) imply the follow-

ing two necessary conditions have to hold if m1 can take values close to 0 and

m2 can take values close to 1 (which is reasonable for the situation we consider

here): (i) a1; d1 > g1, (ii) a2; d2 < g2. We now set

a1 ¼ 0:6; b1 ¼ 0:4; g1 ¼ 0:3; d1 ¼ 0:5;

0.0 0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

2.0

2.5

Figure A2. L1,1 (decreasing curve) and L2,1 (increasing curve) as a function of m2

for the parameters from Equation (A.6).

Figure A1. The Bayesian network considered in the first step.
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a2 ¼ 0:1; b2 ¼ 0:6; g2 ¼ 0:8; d2 ¼ 0:4; ðA:6Þ

and plot L1,1 and L2,1 as a function of m2 (Figure A2) and L2;2 and L1;2 as a

function of m1 (Figure A3). We see that D1 confirms M1 for m2 > 0:25 and

that D2 disconfirms M1 for m2 > 0:22. We also see that D2 confirms M2 for

m1 < 0:44 and that D1 disconfirms M2 for m1 < 0:5.

Let us now study when the ‘total evidence’, that is, D0 :¼D1 ^D2, confirms

M1 and when D0 confirms M2. To do so, we plot

L0;1 :¼
PðD0j:M1Þ

PðD0jM1Þ
ðA:7Þ

as a function of m2 (Figure A4) and

L0;2 :¼
PðD0j:M2Þ

PðD0jM2Þ
ðA:8Þ

0.0 0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

2.0

Figure A3. L2;2 (increasing curve) and L1;2 (decreasing curve) as a function of m1

for the parameters from Equation (A.6).

0.0 0.2 0.4 0.6 0.8 1.0
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3.0

Figure A4. L0;1 as a function of m2 for the parameters from Equation (A.6).
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as a function of m1 (Figure A5) for the parameters from Equation (A.6). We

see that D0 confirms M1 for m2 < 0:18 and that D0 confirms M2 for m1 < 0:18.

That is, for m2 > 0:18, the total evidence D0 always disconfirms M1.

In the second step, we introduce a unifying theory, U. U is negatively

correlated with M1 and positively correlated with M2. This situation is

depicted in the Bayesian network in Figure A6.

To complete this network, we set for i¼ 1, 2

PðUÞ ¼ u;PðMijUÞ ¼ pi;PðMij:UÞ ¼ qi; ðA:9Þ

with p1 < q1 and p2 > q2.

To be more specific, let us set

p1 ¼ 0:1; q1 ¼ 0:4; p2 ¼ 0:7; q2 ¼ 0:4: ðA:10Þ

As mi ¼ u pi þ ð1� uÞ qi for i¼ 1, 2, we see that the prior probability m1

decreases from 0.4 to 0.1 as u increases from 0 to 1. At the same time, m2

increases from 0.4 to 0.7. Note that we assume that both models, that is, M1

and M2, have the same prior probability, namely, 0.4. That is, in the absence

of a unifying theory, M1 and M2 are equally probable.

In the third step, we combine the Bayesian networks in Figure A1 and

Figure A6 and obtain the Bayesian nework in Figure A7. The probability

distribution is the same as before, that is, we assume Equations (A.1), (A.6),

(A.9), and (A.10).

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

Figure A5. L0;2 as a function of m1 for the parameters from Equation (A.6).

Figure A6. The Bayesian network considered in the second step.
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Figure A8 shows L1,1 and L2,2 (lower two curves) as well as L1,2 and L2,1

(upper two curves) as a function of u. We see that in this part of the parameter

space, D1 confirms M1, D2 confirms M2, D1 disconfirms M2, and D2 discon-

firms M1.

Figure A9 shows L0,2 and L0,2 as a function of u. We see that for these

parameters, D0 always disconfirms M1. We also see that D0 disconfirms M2

for u < 0.73 and that D0 confirms M2 for u > 0.73.

To complete our discussion, we show that the information set S1 :¼

fU;M1;D1g is incoherent, whereas the information set S2 :¼ fU;M2;D2g is

coherent for the parameters used above. To do so, we consider Shogenji’s

([1999]) measure of coherence, which is defined as follows:

cohSðS1Þ :¼
PðU;M1;D1Þ

PðUÞPðM1ÞPðD1Þ
; ðA:11Þ

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

Figure A8. L1,1, L2;2, L1;2 and L2,1 as a function of u for the parameters from

Equation (A.6) and Equation (A.10). At u ¼ 1, the order of the curves is, from top

to bottom, L2,1, L1,2, L1,1, L2,2.

Figure A7. The Bayesian network considered in the third step.
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cohSðS2Þ :¼
PðU;M2;D2Þ

PðUÞPðM2ÞPðD2Þ
: ðA:12Þ

An information set, S, is coherent if and only if cohSðSÞ > 1 and incoherent if

cohSðSÞ < 1. Figure A10 shows cohSðS1Þ (lower curve) and cohSðS2Þ (upper

curve), and we see that S1 is (mostly) incoherent while S2 is (always)

coherent.

One also sees from Figure A10 that cohSðS1Þ > 1 for large values of u. We

take this to be a misleading artefact of the Shogenji measure, which is known

to have problems with information sets of more than two propositions (for a

discussion, see Schupbach [2011]). Besides Schupbach’s modification of

Shogenji’s measure, a more thorough analysis might also want to consider

other coherence measures discussed in the literature (for references, see

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.2

1.4

1.6

1.8

2.0

Figure A9. L0;1 (increasing curve) and L0;2 (decreasing curve) as a function of u

for the parameters from Equation (A.6) and Equation (A.10).

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Figure A10. cohSðS1Þ (increasing curve) and cohSðS2Þ (decreasing curve) as a

function of u for the parameters from Equation (A.6) and Equation (A.10).
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Bovens and Hartmann [2003]; Schupbach [2011]). A more complete analysis

will also examine other parts of the parameter space and derive analytical

results. We leave this for another occasion.
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Causally’, Noûs, 38, pp. 154–76.

Strevens, M. [2008]: Depth: An Account of Scientific Explanation, Cambridge, MA:

Harvard University Press.

Teller, P. [2001]: ‘Twilight of the Perfect Model’, Erkenntnis, 55, pp. 393–415.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and Goodman, N. D. [2011]:

‘How to Grow a Mind: Statistics, Structure, and Abstraction’, Science, 331, pp.

1279–85.

Bayesian Cognitive Science, Unification, and Explanation 33

 at U
niversitaetsbibliothek G

iessen on N
ovem

ber 21, 2016
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

http://bjps.oxfordjournals.org/


Thagard, P. [2007]: ‘Coherence, Truth, and the Development of Scientific Knowledge’,

Philosophy of Science, 74, pp. 28–47.
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